The effect of inclination and stand-off on the dynamic response of beams impacted by slugs of a granular material
نویسندگان
چکیده
The dynamic response of end-clamped sandwich and monolithic beams to impact by high-velocity tungsten carbide (WC) particle columns (slugs) has been measured with the aim of developing an understanding of the interaction of ejecta from a shallow-buried explosion with structures. The monolithic beams were made from stainless steel, while the sandwich beams of equal areal mass comprised stainless steel face sheets and an aluminium honeycomb core. High-speed imaging was used to measure the transient transverse deflection of the beams, to record the dynamic modes of deformation, and to observe the flow of the WC particles upon impact. The experiments show that sandwich beams deflect less than the monolithic beams both in normal and inclined impact situations. Moreover, the deflections of all beams in the inclined orientation were less than their respective deflections in the normal orientation at the same slug velocity. Intriguingly, the ratio of the deflection of the sandwich to monolithic beams remains approximately constant with increasing slug velocity for inclined impact but increases for normal impact; i.e. inclined sandwich beams retain their advantage over monolithic beams with increasing slug velocity. Dynamic force measurements reveal that (i) the momentum transferred from the impacting slug to both monolithic and sandwich beams is the same, and (ii) the interaction between the impacting particles and the dynamic deformation of the inclined monolithic and sandwich beams results in a momentum transfer into these beams that is equal to or greater than the momentum of the slug. These experimental findings demonstrate that contrary to intuition and widespread belief, the performance enhancement obtained from employing beam inclination is not due to a reduction in transferred momentum. Finally, we show that increasing the stand-off distance decreases beam deflections. This is because the slugs lengthen as they traverse towards their target and thus the duration of loading is extended with increasing standoff. However, combining increased stand-off with sandwich construction does not yield the synergistic benefits of sandwich construction combined with beam inclination. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Coupled discrete/continuum simulations of the impact of granular slugs with clamped beams: Stand-off effects
Coupled discrete particle/continuum simulations of the normal (zero obliquity) impact of granular slugs against the centre of deformable, end-clamped beams are reported. The simulations analyse the experiments of Uth et al. (2015) enabling a detailed interpretation of their observations of temporal evolution of granular slug and a strong stand-off distance dependence of the structural response....
متن کاملDynamic Response of Multi-cracked Beams Resting on Elastic Foundation
Cracks cause to change dynamic response of beams and make discontinuity in slope of the deflection of the beams. The dynamic analysis of the Euler-Bernoulli cracked beam on the elastic foundation subjected to the concentrated load is presented in this paper. The stiffness of the elastic foundation and elastic supports influence on vibrational characteristics of the cracked beam. The Dynamic Gre...
متن کاملEffect of process parameters on tensile strength of welds and modeling of laser welding of PA6/NBR/clay nanocomposite by response surface methodology
Polyamide 6 / nitrile butadiene rubber / nanoclay (PA6/NBR/clay) nanocomposite has gathered wide acceptance in industry. Laser welding, as a fabrication method, is applied to welding of polymer nanocomposites. In this study, the input parameters (clay (Closite 30B) content, laser power, scan velocity and stand-off-distance) are varied to achieve the best responses (tensile strength of welds). R...
متن کاملOn the response spectra of cracked beams under different types of moving force
In this paper, the dynamic responses of cracked beams under different moving forces, including moving load, moving mass, moving oscillator, and four-degrees-of-freedom moving system, are investigated. Structural elements such as beams are designed to withstand the predicted loads, but unfortunately, they are always exposed to unpredictable damage such as cracks. Several factors may cause these ...
متن کاملFinite Element Analysis of Functionally Graded Piezoelectric Beams
In this paper, the static bending, free vibration, and dynamic response of functionally graded piezoelectric beams have been carried out by finite element methodunder different sets of mechanical, thermal, and electrical loadings. The beam with functionally graded piezoelectric material (FGPM) is assumed to be graded across the thickness with a simple power law distributio...
متن کامل